

DIY Quadcopter

Verslag

Embedded systems

Verslaggever: Jef Stals
 Stijn Boutsen

Academiejaar: 2014-2015

J.Stals & S.Boutsen

Embedded systems Pagina 2

Inhoud

1 Introduction .. 3

2 The basics of a quadcopter (in a nutshell): ... 4

3 Design of the quadcopter ... 5

3.1 Frame .. 5

3.2 PCB / Flight controller ... 6

3.3 Motors / ESC ... 7

4 Flight controller ... 8

4.1 Reading the angle ... 8

4.1.1 I2C ... 9

4.1.2 Gyroscope ... 9

4.1.3 Accelerometer ... 10

4.1.4 Complementary filter .. 11

4.2 Control loop .. 12

5 Communication with quadcopter ... 14

5.1 RF-transmitter / receiver .. 14

5.2 Raspberry pi .. 14

6 Attachments .. 15

J.Stals & S.Boutsen

Embedded systems Pagina 3

1 Introduction
For the course “embedded systems”, we chose to build a quadcopter using a raspberry Pi and an

Arduino. In this paper we’ll provide some information about the build process and the techniques that

were used. This document has been written as a comprehensive guide for future multirotor-builders.

A quadcopter is actually a multirotor helicopter. The big difference with a normal helicopter is that it

uses 4 rotors instead of 2. Because of this there is no need for a tail rotor. This combined with the right

sensors and flight controller creates a stable VTOL-aircraft (Vertical take-off and landing).

An Arduino collects the sensor-data, calculates the angles and does all the other calculations related to

the control-loop. It’s important that this happens in real time, any delay can result in a crash of the

quadcopter. The Raspberry PI is configured as an access point and is running a webserver through which

we can control the quadcopter. The raspberry PI communicates with the Arduino through serial

communication.

Next to being remote controlled there are also multicopters that operate autonomous, the so called

drones. These devices can be used for a large range of monotonous and dangerous tasks. An example is

the idea of Amazon to use drones to deliver packages right on your doorstep. As another application the

army and commercial security services use drones equipped with HD cameras to patrol dangerous

areas.

J.Stals & S.Boutsen

Embedded systems Pagina 4

2 The basics of a quadcopter (in a nutshell):
A quadcopter has four motors with propellers. The speed and thus the lift of each motor can be changed

separately; this gives us the ability to control the quadcopter. For example: if all the four motors are

rotating at the same speed, the quadcopter will be balanced and flying perfectly horizontal. The motors

and propellers must create enough force to overcome the gravity. (figure 1,left) This is only in theory. In

real live there will be always some noise or external forces like wind that brings the quadcopter out of

balance. We have to make some adjustments to keep the quadcopter in the air. This is the job of the

flight controller.

When we lower the speed of one motor, the quadcopter will roll and fly in another direction. In the

illustration underneath (figure 1,right) you can see how the forces work on the quadcopter. Notice that

the total lift power (FL1 and FL2) decreases, so we have to increase the motor speed to prevent the

quadcopter from crashing.

Figure 1: Basics of a quadcopter

Important to notice is that not all the motors are rotating in the same direction. When they would in the

same direction, it would generate a lot of momentum and the quadcopter would spin around his own

axis. To avoid this situation, the motors will rotate two by two in another direction. This way, the total

amount of moment will be zero. It’s important that that all the propellers generate an upward force, so

two different kinds of propellers are needed: clockwise and counterclockwise propellers. (See figure 3)

Figure 2: Clockwise and counter clockwise propellers

J.Stals & S.Boutsen

Embedded systems Pagina 5

3 Design of the quadcopter
A quadcopter exist of many components. We’ll give an overview of the used materials and components.

3.1 Frame
This section discusses the frame. It is important that it’s strong enough but still very light. The design

was made in AutoCAD and then lasercut out of plexiglass. (4mm thick plexiglass was used).

J.Stals & S.Boutsen

Embedded systems Pagina 6

3.2 PCB / Flight controller
Each quadcopter has a flight controller that keeps the aircraft in the air. The flight controller let’s all the

components work together. We decided to build our own flight controller with an Arduino nano and

sensors. The flight controller uses the measurements from the gyroscope, accelerometer and barometer

to control the quadcopter. In the control loop it calculates the necessary speed for the motors to keep

the quadcopter in the air without crashing. Finally a raspberry pi was added to make an easy interface

with the flight controller. How the flight controller exactly works and how it’s coded is mentioned later

in this paper.

On the PCB a gyroscope, accelerometer, barometer, level converter and an Arduino nano were

implemented. The reason a PCB was designed is to reduce the amount of cables and make everything

clean. The design was made in Designspark 5.0. To attach the circuitboard to the frame the design

provides 4 holes in the PCB that match the holes in the frame. Also 2 extra holes were added to the PCB

to attach a raspberry pi.

The final product is shown in the 2 following photos.

J.Stals & S.Boutsen

Embedded systems Pagina 7

3.3 Motors / ESC
The motors used are 3-phase brushless motors. This means there are no brushes and thus less

mechanical wear and tear. To control these motors, each phase needs to be controlled at the right time.

To do this, an ESC (electronic speed controller) was used for each motor. The ESC is connected to the 3

phases of the motor at one side, and at the other side to the power-source (In this case a LiPo-battery).

It also has 3 other connections: GND, BEC, and Input. This input-signal gives the possibility to control the

ESC by a PWM-signal at a low voltage (5V). If the motor is spinning in the wrong direction, two of the

phase-cables have to be switched.

The ESC are controlled by the flight controller, which is in this case an Arduino nano. The Power cable of

the ESC is connected to the battery by a splitter. The 3 phase cables of the ESC are connected to the

brushless motor. The signal cable is connected to one of the PWM-pins of the Arduino nano. The GND-

cable is connected to the ground-pin of the Arduino. Do not connect the BEC-cable to the Arduino. The

BEC-cable provides a 5V power.

In the Arduino program the ‘Servo’ library is included, which provides control over the ESC as if it were a

servo. The servo library has the function: writeMicroseconds(µS) to control a servo. This generates a

PWM-signal with a width in microseconds that can be specified.

Important to notice is that you need to arm the motors / ESC before they will rotate. This arming is done

by writing the lowest PWM-value that’s possible for the ESC. If you don’t have a manual and don’t know

what the lowest PWM-value is, you can easy find the lowest value by testing all the PWM-signals in a

loop. When you find the arm-value, the motors will make a sound. If you set the PWM-signal higher, the

motor will begin to rotate.

J.Stals & S.Boutsen

Embedded systems Pagina 8

4 Flight controller
Like said before, a new flight controller was designed. It exists out of five components: Arduino nano,

gyroscope, accelerometer, barometer, level converter and a raspberry pi. An Arduino nano was used to

read all the sensor measurements and do all the calculations for the control loop. The most important

value used is the angle between the quadcopter and the horizon. With this angle and the angular

velocity a control loop can be created that controls the quadcopter.

The gyroscope, accelerometer and barometer are working on a voltage of 3,3V. The Arduino is working

at 5V. To communicate between these devices, we use I²C. Due to the difference in voltage, a level

converter has to be used. The raspberry pi is also working at the 3,3V side of the level converter.

The gyroscope, accelerometer and barometer are all wired with 4 wires: GND, VCC, SDA, and SCL. These

are the only wires needed to use I²C. The SDA and SCL are connected to the 3,3V side of the level

converter. The Arduino is wired with a power and ground wire to the battery. The ESC’s are connected

to the PWM-pins of the Arduino. The I²C-pins of the Arduino are connected to the 5,5V level converter.

You can see the exact wiring in the gerber-files.

4.1 Reading the angle
You can use a quadcopter in an X-configuration, or a +-configuration. The biggest different is the way

you control the motors. To roll or pitch the quadcopter in the X-configuration, you always have to

regulate two motors. In the +-configuration it’s can be done with only one motor so this was an obvious

choice for this project.

A quadcopter has 4 motors, 2 motors at each axis. To explain how to measure the angle and how the

control loop works, we’ll only use one axis. For the other axis it’s exactly the same. When the angle is

mentioned, we always mean the angle between the horizon and the axis of the quadcopter. See figure

1,right.

Two sensors are used to measure the angle: a gyroscope and an accelerometer. The internal workings of

these sensors won’t be discussed. In this case, the L3G4200D gyroscope and the ADXL345 accelerometer

were used. Both sensors have their own weaknesses, so their results were combined with a

complementary filter for an optimal result.

J.Stals & S.Boutsen

Embedded systems Pagina 9

4.1.1 I2C

I²C was used to communicate with the gyroscope and accelerometer. To write values to a register and

read values from a register, we use the next two functions. These functions are used to initialize and

read the values from the gyroscope and accelerometer.

#include <Wire.h>
#define ACCEL (0x53) // Adres van accelerometer I2C
#define GYRO (0X69) // Adres van de gyroscope I2C 0x69

void writeRegister(int device, byte address, byte val) {
 Wire.beginTransmission(device); //start transmission to device
 Wire.write(address); // send register address
 Wire.write(val); // send value to write
 Wire.endTransmission(); //end transmission
}

void readRegister(int device, int address, int num){

 Wire.beginTransmission(device);
 Wire.write(address); // register to read
 Wire.endTransmission();

 Wire.beginTransmission(device);
 Wire.requestFrom(device, num); // Lees een aantal bytes

 int i = 0;
 while(Wire.available())
 {
 buff[i] = Wire.read(); // sla de byte op
 i++;
 }
 Wire.endTransmission();

}

4.1.2 Gyroscope

A gyroscope measures the angular acceleration. By integrating this value, we can calculate the angular

velocity. By integrating once more, the angle can be calculated. We use the L3G4200D gyroscope. This is

a common used gyroscope and there is a lot of information available on the web.

First, the gyroscope has to be initialized:

#include <Wire.h>
#define ACCEL (0x53) // Adres van accelerometer I2C
#define GYRO (0X69) // Adres van de gyroscope I2C 0x69

void init_gyro(int scale){
 // Enable x, y, z and turn off power down:
 writeRegister(GYRO, 0x20, 0x0F);

 // If you'd like to adjust/use the HPF, you can edit the line below to configure CTRL_REG2:
 writeRegister(GYRO, 0x21, 0x0F);

 // Configure CTRL_REG3 to generate data ready interrupt on INT2
 // No interrupts used on INT1, if you'd like to configure INT1
 // or INT2 otherwise, consult the datasheet:
 writeRegister(GYRO, 0x22, 0b00001000);

J.Stals & S.Boutsen

Embedded systems Pagina 10

 // CTRL_REG4 controls the full-scale range, among other things:
 if(scale == 250){
 writeRegister(GYRO, 0x23, 0b00000000);
 }else if(scale == 500){
 writeRegister(GYRO, 0x23, 0b00010000);
 }else{
 writeRegister(GYRO, 0x23, 0b00110000);
 }

 // CTRL_REG5 controls high-pass filtering of outputs, use it
 // if you'd like:
 writeRegister(GYRO, 0x24, 0xFF);
}

After that, the values can be read. The following code-section only shows the code for the x-value, the y-

value is exactly the same (Only replace 0x29 by 0x2B and 0x28 by 0x2A).

void read_values_gyro(){

 // Only x-angle explained
 readRegister(GYRO, 0x29, 1);
 byte xMSB = buff[0];

 readRegister(GYRO, 0x28, 1);
 byte xLSB = buff[0];

 x_gyro = ((xMSB << 8) | xLSB);

 x_gyro = (x_gyro * 0.00875); // offset
 x_gyro_f = (0.70 * x_gyro_f) + (0.30 * x_gyro); // filtered value

 dt_x_gyro = (micros() - dt_x_gyro) * pow(10,-6);
 x_hoek_gyro = x_gyro_f * dt_x_gyro;
 dt_x_gyro = micros();

4.1.3 Accelerometer

An accelerometer measures the acceleration by the earth. This value is used to calculate the angle. In

the quadcopter, an ADXL345 accelerometer was used. This sensor is also very well documented on the

internet. Again, the sensor has to be initializes:

void init_accel(){
 // Instellen accelerometer
 writeRegister(ACCEL, 0x2D, 0);
 writeRegister(ACCEL, 0x2D, 16);
 writeRegister(ACCEL, 0x2D, 8);
}

Read the values:

void read_values_accel(){
 readRegister(ACCEL, 0x32, 6);
 double x = (double)((((int)buff[1]) << 8) | buff[0]);
 double y = (double)((((int)buff[3]) << 8) | buff[2]);
 y_accel = y/2.9;
 x_accel = x/2.9;

}

J.Stals & S.Boutsen

Embedded systems Pagina 11

4.1.4 Complementary filter

Because the data from the accelerometer and the gyroscope is not ideal, we combine these two values

in a filter. The best filter to use is a Kalman-filter but is hard to understand and uses a lot of compute-

time. We decide to use a complementary filter that is easy to understand, doesn’t use a lot of compute-

time and gives almost the same results as the Kalman-filter. The filter is defined as follow:

𝑦𝑎𝑛𝑔𝑙𝑒=0,96(𝑦𝑎𝑛𝑔𝑙𝑒+𝑦𝑔𝑦𝑟𝑜)+0,04 𝑦𝑎𝑐𝑐𝑒𝑙

Ygyro is the value calculated by using the measurements of the gyroscope.

Yaccel is the value calculated by using the measurements of the accelerometer.

So finally there are 2 angles: the x-angle and the y-angle, one for each axis. There’s also the angular

velocity of the two axis. With these values it’s possible to control the roll and pitch of the quad. At this

moment, we didn’t implement a way to control the yaw and the altitude.

Next code-section provides the code for the filter:

void read_values(){
 // Read values from the gyroscope
 read_values_gyro();

 // Read the values from the accelermoter
 read_values_accel();

 // Calculate the angle with the complementary filter
 angle_y = 0.96 *(angle_y + y_hoek_gyro) + 0.04*x_accel;
 angle_x = 0.96 *(angle_x + x_hoek_gyro) + 0.04*y_accel;

}

J.Stals & S.Boutsen

Embedded systems Pagina 12

4.2 Control loop
In general there are two ways to control a quadcopter: rate-mode and stable mode.

Rate mode will control the angular velocity of the quadcopter in both axis. The position of the stick at

the remote control is the value of the desired angular velocity. If you release the stick, the quadcopter

will desire an angular velocity of 0°/s. This mean the aircraft won’t auto balance itself but stay in the

position it is. This way of flying is for more experienced pilots and give them the ability to do acrobatic

moves.

In stable mode, the angle in both axis will be controlled. The position of the stick at the remote control is

the value of the desired angle. When you release the stick, the quadcopter will go back to an angle of

zero degrees. The quad will always auto balance itself in this mode. This mode is much easier to fly than

the rate-mode, but acrobatic moves are mostly not possible. To create a control loop for stable mode,

we first need to understand rate mode.

This section very basically explains how it works. We want the quadcopter to start turning at a value that

we set with the stick at our remote control (= set point). But at this moment, the quadcopter is turning

at a value that can be measured with the gyroscope (= actual value). The difference between the set

point and the actual value, provides an error. The PID-controller will calculate a value based on this error

to lower the error (we don’t explain how PID works). When the PID-controller is fine-tuned, the

quadcopter will turn at the specified rate. The hardest part is to tune this PID-controller correct. (See

later).

Stable mode is easy to understand if you understand the rate-mode. Stable mode uses rate-mode: the

set-point of the rate-mode is now not the position of the sticks. The set point of the rate-mode is

calculated by the error of the actual angle and the desired angle. This error is multiplied by a factor and

gives us the set-point for rate-mode. (Also a PID-controller is possible).

J.Stals & S.Boutsen

Embedded systems Pagina 13

For example: if you want an angle of 10° and the current angle is 0°, there is an error of 10°. This error is

multiplied by a factor (for example 2,7) that gives us 27°/s. This is the set-point of the rate-mode. The

quadcopter will turn, and the error in angles is getting smaller. Next we calculate the error in angles is

5°, this will result in an angular velocity of 13,5°/s.

At this moment, it’s only possible to control the roll and the pitch. There is no yaw-control or altitude-

controller implemented yet.

To program this control loop the PID-library from Arduino was used. We use stable-mode, so used 2 PID

controllers for each axis. You can find the complete source-code in the attachment.

J.Stals & S.Boutsen

Embedded systems Pagina 14

5 Communication with quadcopter
Two ways of communication were implemented to control the quadcopter. The first one is with an RF-

transmitter and receiver. This is ideal for outside flying at larger distances (around 1km). This method

gives us a reliable communication.

The second implementation is with a raspberry pi. This provides the ability to fly the quadcopter with a

lot of devices. For example: laptop, smartphone, Xbox-controller, etc. The raspberry pi is an ideal way to

create an interface for the flight controller of the quadcopter.

5.1 RF-transmitter / receiver
We bought and RF-transmitter / receiver. These work all the same. The system has 6 channels and gives

a block signal, where the length of the block is the value that needs to be measured. Another Arduino

(an Arduino pro mini) is used to measure these signals. The best way to implement these measurements

is with an interrupt, but with an Arduino it is not possible to use that many interrupt pins. We found a

function that does the measurement without interrupts, called pulseIn(). It’s not a clean solution, but is

a fast way and good enough for testing purposes. The final product though can be controlled with a

Raspberry Pi

We added the Arduino pro mini to the receiver and measured the signal lengths. These are then

transformed to a value between 0 and 255, the range of a byte. The Arduino (mini) is setup as an I²C-

slave device, so the flight controller (the Arduino nano) can easy communicate with it. You can find the

code in the attachment.

5.2 Raspberry pi
The raspberry pi is turned into a wireless access point by following this guide

(https://learn.adafruit.com/setting-up-a-raspberry-pi-as-a-wifi-access-point/overview). We also run a

webserver with php on the raspberry pi. Now we are able to connect with a large amount of devices to

the raspberry pi. At the raspberry pi is running a python script that communicates with the flight

controller (Arduino) over USB. The reason USB is used and not I²C is that it was very hard to configure

the raspberry pi as an I²C slave.

At the webserver we have running a php-script that puts the values from the interface in a file. These

values in the file are read by the python script. Finally the python script transforms these values in a

byte range, and sends them to the flight controller over USB.

J.Stals & S.Boutsen

Embedded systems Pagina 15

An additional python script (ControlCam.py) was added afterwards to give the user control over the Pi

Noir camera thru the RF-transmitter. This would allow the user to make pictures and video recordings

while also providing control over optional IRLEDs and cosmetic LEDs. Due to the size of the project, this

code isn’t implemented in the final code but we included it in the attached zip-file for future builders.

Code for a GPS-module was also tested but not integrated because of the unstable connection and

problems to connect to GPS-satellites. We presume this is due to the short antenna on our SkyNav

SKM53 GPS-module.

6 Attachments

Quad.ino & sensors.ino The source code of the flight controller (running on Arduino nano)

Gerber All the gerber files of the PCB

Rcreceiver.ino The source code of the rc-receiver (running on Arduino pro mini)

Flightcontroller.py The python script running on the raspberry pi

Index.php File running on the webserver

ControlCam.py The python script for controlling the camera, optional IRLeds and
cosmetic LEDs

GPS-files Arduino and python files for sending GPS data to raspberry pi

